On the recurrence coefficients of semiclassical Laguerre polynomials

نویسندگان

  • Galina Filipuk
  • Walter Van Assche
چکیده

It is known [L. Boelen, W. Van Assche, Proc. Amer. Math. Soc. 138 (2010), 1317–1331] that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semiclassical extension of the Laguerre weight satisfy a discrete Painlevé equation. By using the Toda system for the recurrence coefficients we show that this discrete equation can be obtained from a Bäcklund transformation of the fourth Painlevé equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Painlevé Equations for Recurrence Coefficients of Semiclassical Laguerre Polynomials

We consider two semiclassical extensions of the Laguerre weight and their associated sets of orthogonal polynomials. These polynomials satisfy a three-term recurrence relation. We show that the coefficients appearing in this relation satisfy discrete Painlevé equations.

متن کامل

The relationship between semi-classical Laguerre polynomials and the fourth Painlevé equation

We discuss the relationship between the recurrence coefficients of orthogonal polynomials with respect to a semiclassical Laguerre weight and classical solutions of the fourth Painlevé equation. We show that the coefficients in these recurrence relations can be expressed in terms of Wronskians of parabolic cylinder functions which arise in the description of special function solutions of the fo...

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

A formula for the coefficients of orthogonal polynomials from the three-term recurrence relations

In this work, the coefficients of orthogonal polynomials are obtained in closed form. Our formula works for all classes of orthogonal polynomials whose recurrence relation can be put in the form Rn(x) = x Rn−1(x) − αn−2 Rn−2(x). We show that Chebyshev, Hermite and Laguerre polynomials are all members of the class of orthogonal polynomials with recurrence relations of this form. Our formula unif...

متن کامل

Turán Inequalities and Zeros of Orthogonal Polynomials∗

We use Turán type inequalities to give new non-asymptotic bounds on the extreme zeros of orthogonal polynomials in terms of the coefficients of their three term recurrence. Most of our results deal with symmetric polynomials satisfying the three term recurrence pk+1 = xpk − ckpk−1, with a nondecreasing sequence {ck}. As a special case they include a non-asymptotic version of Máté, Nevai and Tot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010